
DAVIDSO
LABORATOI

Report SIT-DL-76-181
April 1976

PROPELLER BLADE PRESSURE D~I

DUE TO LOADING AND THCKNE

S. Tsakonae, W. R. Jacoba,

This report was sponsore
Naval Sea Systems Co

General Hydrodynamics Rese4
under Contract N00014-7

administered by t
David Taylor Naval Ship Research and

APPROVED FOR PUBLIC RELEASE; DIST



I Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (147in Data Ento-od)

REPORT DOCUMENTATION PAGE REDISRCIN

I ropeller Blade Pressure Distribution Due to Final

LIT DCASCTIO NTDONMBRADI

10. SURPEMETAM NOTES RO T TS

Steen IE OD Cnstiu nteve od T ecology m dniyb lc ub

Dav. ABTATayonlnor eavaleShidpI Research and Denti by te~y block-i numb976

DD ~147 EOTIONFINV ~Unclassified

/~~~~~9// ~ ~ ~ DC ASS F1UR CAII CATION/ SPAE(e DOWGRADNoe



Unclassified .

-1.IH Y CLASSIFICATION OF THIS PAGEf'Wh DI.A Enlor.d)

ABSTRACT

A theoretical approach Is developed and a computational procedure adapt-
able to a high speed digital computer is established for the evaluation of the
blade pressure distribution of a marine propeller due to thickness and loading
effects. The dual role of the blade thickness is considered. The contribution
of the "nonplanar thickness"to the propeller loading and pressure distribution
and the effect of the rflow distortion thlckness' are studied by means of the
"thin body"approximation.

The surface integral equation which relates the unknown loading to the
known velocity distribut ion on the blades is solved by the mode approach in
conjunction with the "lift operatorl"'Iechnique. The analysis treats both design
and off-design conditions in steady-state and unsteady flows, and the proper
chordwise modes are selected for each condition.

The numerical solution yields the blade loading and resulting hydrodynamic
forces and moments and blade bending moments, and, in addition, the blade
pressure distributions on each blade face due to both loading and thickness
effects, thus providing information necessary for the prediction of cavitation
inception. Calculations have been performed for a set of three 3-bladed
propellers of different EAR operating in a screen-generated wake, for compar-
ison with experimental data.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(Whon Dat& Enate ed)



pill

AN k seW STEVENS INSTITUTE OF TECHNOLOGY
0411 fqrc~aDAVIDSON LABORATORY

................. CASTLE POINT STATION
IWOBOKEN. NKW JERSErY

ill coon

Report SIT-DL-76-1869

I April 1976

PROPELLER BLADE PRESSURE DISTRIBUTION
DUE TO LOADING AND THICKNESS EFFECTS

by

S. Tsakonas, W.R. Jacobs, M.R. Ali

This research was sponsored by the Naval Sea Systems
Commnand General Hydrodynamics Research Program, under
Contract N00014-75-C-0482, administered by the David
Taylor Naval Ship Research and Development Center

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Approved by: ' .
J.P. Bresl in, Director

K'OCT 20 1976



R- 1869

II

ABSTRACT

*A theoretical approach is developed and a computational procedure

adaptable to a high speed digital computer is established for the evalua-

tion of the blade pressure distribution of a marine propeller due to

thickness and loading effects. The dual role of the blade thickness is

considered. The contribution of the "nonplanar thickness" to the propeller

loading and pressure distribution and the effect of the "flow distortion

thickness" are studied by means of the "thin body" approximation.

The surface integral equation which relates the unknown loading to

the known velocity distribution on the blades is solved by the mode ap-

proach in conjunction with the "lift operator" technique. The analysis

treats both design and off-design conditions in steady-state and unsteady

flows, and the proper chordwise modes are selected for each condition.

The numerical solution yields the blade loading and resulting

hydrodynamic forces and moments and blade bending moments, and, in addition,

the blade pressure distributions on each blade face due to both loading

and thickness effects, thus providing information necessary for the pre-

diction of cavitation inception. Calculations have been performed for a

set of three 3-bladed propellers of different EAR operating in a screen-

generated wake, for comparison with experimenLal data.
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NOL'NCLATURE

A(A) function defined in Eqs. (33) and (35)

a 7n/J (nondimensional) inversely proportional to advance

ratio at design condition

aod Tr/Jod (nondimensional) inversely proportional to advance

ratio of off-design condition

a designation of NACA-a meanline

CF,CD frictional coefficients

C pressure coefficient

c expanded chord length, ft.

F propeller-induced forces in x,y,z direction (see Fig. 1)x,y~z

f camberline ordinates from face pitch line

f blade thickness distribution
r

IM( ) modified Bessel function of first kind, of order n

l( ) defined in Eq. (20)

index

design advance ratio

Jod off-design advance ratio
aod-J

j index

K kernel of integral equation

R(m'n) modified kernel after chordwise integrations

K M( ) modified Bessel function of second kind of order m

k variable of integration

L(q)(p'O ) loading distribution in lb/ft.

L ;(r) spanwise loading in lb/ft.

L(q'n) (p) spanwise loading coefficients of the chordwise modes in lb/ft.

viiI
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2integer multiple

Mb blade bending moment about face pitcn line

M(CpO o )  source strength at point ( ,P,6o)

m index of summation

m order of lift operator

N number of blades

n blade index

n rps

n order of chordwise mode

n unit normal vector on helicoidal surface at loa ing point

n unit normal vector on helicoidal surface at control point

P pressure, lb/ft 2

ap P -P_-P, pressure jump, lb/ft 2

P(r) geometric pitch at each radial position, ft.

Q 4,yz propeller-induced moments about x,y,z axis (see Fig. i)

q order of harmonic of inflow %ield

R',R Descartes distance

Rc  Reynolds number based on chore lengtn

r radial ordinate of control point

ro 0propeller radius, ft.

S propeller lifting surface, ft2

s chordwise location as fraction of chord length

t time, sec.

t maximum thickness of blade, ft.
U 0ree stream velocity, ft/sec. (design)

Uod free stream velocity, ft/sec. (off design)

u variable of integration

vrii
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v(q) (r) Fourier coefficients of the known downwash velocity

distribution

Vc  normal velocity due to camber effects

Vf normal velocity due to flow-incidence angle

VN normal velocity due to wake

V
Tnormal velocity due to nonplanar thickness

VL  longitudinal perturbation velocity (V,-U)

VT tangential perturbation velocity

V measured axial velocity

W velocity distribution normal to propeller

W (q ' )  defined in Equation (20)

x longitudinal ordinate of control point

x,ro cylindrical coordinates of control point

xyz Cartesian coordinate system

8 tan- (u/fir) = tan l (Il/ar)

6 defined in Eq. (12)

0(n) chordwise mode shapes

0 -Ot (see Fig. 2)

o angular ordinate of loading point

00 angular position of loading point with respect to olade

reference line, in moving coordinate system (see Fig. 2)

ob  subtended angle of projected blade semichord, radians

n 2 (n-l)/N, n-1,2,...N

o (r) geometric pitch angle at each radial position

p

o angular chordwise location of loading point (in

trigonometric transformation Eq. 14)

A n) (y) defined in Eq. (21) (see Appendix A)

ix
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An(y) defined in Appendix AA1

v kinematic viscosity

longitudinal ordinate of loading point

cylindrical coordinates of loading point

p radial ordinate of loading poin:

Pf mass density of fluid

PO ratio of leading edge radius to chord

G angular measure of skewness from blade reference line (see F9g. 2)

AG ar -op = difference in skewness at control and loi-ing poin:

variable of integration

velocity potential

O(M) generalized lift operator (Eq. (18))

0 angular ordinate of control point

angular position of control point with respect :c tdaae
reference line, in movinq*coordinate system (see F*g. 2)

angular chordwise location of control point (in trigono-

metric transformation Eq. 15)

V acceleration potential

magnitude of angular velocity of propeller

W angular frequency of loading

Superscripts

r refers to control point

P refers to loading point

X
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INTRODUCTION

Davidson Laboratory has been engaged in a series of investigations

concerned with the adaptation of the linearized unsteady lifting surface

theory to the case of a marine propeller operating in a nonuniform flow

field (see, for example, References 1-3), the objective of which has been

the prediction of blade loading distributions, propeller-generated forces

and moments and blade bending moments. In these investigations, it has

been assumed that the lifting surfaces (blades) have zero thickness.

The linearized wing theory considers that an arbitrary wing cross-

section is composed of a symmetrical part corresponding to its thickness

distribution and an asymmetrical part of zero thickness but with camber

and angle of attack. The asymmetrical part contributes to the lift of

the wing. On the other hand, the thickness distribution contributes

nothing to the lifting properties of a wing unless it is nonplanar.

The marine propeller with its blade describing a helicoidal surface

is one of the few nonplanar lifting surfaces. The blade thickness plays

a dual role, influencing both the lifting and non-lifting characteristics

of the blade. As part of the nonplanar surface, it will induce a con-

tinuous component of velocity on points of the surface itself, thus

affecting the blade loading distribution. On the other hand, the symmetri-

cal flow disturbance caused by the blade thickness will influence the

pressure distributions on the suction and pressure sides of the blade

without contributing to the net blade loading. Both effects, designated

for brevity as due to "nonplanar" thickness and "flow distortion" thick-

ness, will occur in steady-state flow conditions since the blade thickness

I is a time-independent quantity.

The study of the blade pressure distribution arising from both load-

ing and thickness effects has been undertaken so that the necessary

information can be obtained for cavitation and blade stress analyses.

g The study treats both design and off-design conditions.

'I
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The surface integral equation which relates the unknown loading to

the known velocity distribution on the blade is solved by the mode approach

in conjunction with the "lift operator" technique. The selection of the

proper chordwise modes in the steady-state flow condition at design advance

ratio J is dictated by the shape of the loading distribution in two-

dimensional flow on a foil with the same camber distribution (NACA-a mean

lines, NACA mean lines of the 4- and 5-digit wing series, lenticular mean

line, etc.). At off-design J in the steady-state condition, there is an

angle of attack due to the difference AJ and the additional loading (to

that at design J) due to this angle of attack is represented by the first

(cotangent) term of the known Birnbaum chordwise modes. The complete

Birnbaum modes, which have the proper leading edge singularity and satisfy

the Kutta condition at the trailing edge, are used to represent the chord-

wise loading distribution in the unsteady flow conditions at both design

and off-design J.

The linearized unsteady lifting surface theory requires the singular

behavior at the leading edge. Although the singularity is integrable, its

presence in the blade pressure distributions is unrealistic. Therefore,

whenever the Birnbaum modes are used, a correction factor to remove the

leading edge singularity based on Van Dyke's4 and Lighthill's 5 method is

introduced in the blade pressure distribution.

This research is sponsored by the Navai Sea Systems Command General

Hydrodynamics Research Program, under Contract N00014-75-C-0482, adminis-

tered by the David Taylor Naval Ship Research and Development Center.

2
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I. A11 OUTLINE OF tE A,7ALYSIS

In the analysis which follows, the blades of any ship propeller are

treated as warped lifting surfaces which encounter the spatially varying

inflow and, hence, develop unsteady forces which are cyclic functions of

blade position. The blades need not be of a pure he)icoidal surface, i.e.,

I they may have varying pitch over the radius. However, the reference sur-

face, along which the shed vorticity is considered to be convected, is re-

stricted to be a pure helicoid whose local pitch is fixed by the joint

action of the forward speed of the ship and the tangential velocity at

any radius, or simply the pitch angle of this vortex-wake surface is tan
- - -)

The theory is formulated to give the linearized pressure distribution

on each side of the blade at eight radial locations. These distributions

are made up of an antisymmetric part associated with the lifting action

of the blade and a symmetric part developed by the blade thickness distribu-

tion. As the blade surface is non-planar, the flow produced at any element

by all other thickness elements produces a weak normal flow and this flow

is balanced by the induction of anti-symmetric loading elements which, in

turn, contribute to the pressure distribution as well as to the forces

and moments. This small loading is referred to as being the result of

the presence of non-planar thickness; the major part of the asymmetrical

loading is produced by the presence of cam' -, geometric flow angle and

the normal velocity components associated with the hull spatially variable

wake. The anti-symmetric part of the blade pressure distributions are

solely responsible for the forces, whereas the symmetrical and asymmetrical

contributions determine the pressures on each side, the knowledge of which

is essential for prediction of cavitation inception.

A. Propeller Loading Di.3tribution

1. Integral Equation

The linearized unsteady lifting surface theory for a marine propel-

ler, with its blades lying on a helicoidal surface and operating in non-

uniform flow of an incompressible, ideal fluid, is formulated by means of

the acceleration potential method. It is based on a small perturbation

approximation anJ, also, on the assumptions that the propeller blades are

thin and operate without cavitation and flow separation.

3
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It is known that the pressure field generated by a lifting sur-

face S is given by distributed doublets with axis parallel to the local

normal and with strength equal to the pressure jutip across the surface.

If the acceleration potential function, ), a scalar function of position,

is introduced and defined as having its gradient equal to the accelera-

tion vector, then the strength of the doublet distribution is propor-

tional to the discontinuity of y between the values for the positive

and negative oriented surfaces with respect to the direction of the nor-

mal n, i.e.,

-(P -P ) =-L P(
Pf ()

Here use is made of the linearized relation between the acceleration po-

tential and the perturbation pressure, viz.,

P (2)
P f

where P is local pressure and p is fluid mass density. Thus, the pres-

sure jump is defined as that between the pressure at the back (suction

side) and the pressure at the face (pressure side) of the blade.

The pressure P at any point (x,r, ) (in cylindrical coordinates)

at ti7;e t due to all pressure doublets distributed over dummy (loading)

points ( ,.,') will be given by

P(x,r,t) ffA( ; dS)
4-, =P( ,o,O;t) " Rt(xr, ;C,p,O)T

where is the normal derivative on the surface S at the loading
n point (I , ,), with n the unit normal vector having positive

axial component

and R' (x,r,;;,,,) = [(x- )2 + r2 +p 2 - 2rp cos(O-)] / 2 is the Descartes

distance between the given control point (x,r,0 and the loading

poir <pO2).

The relation between the velocity potential function 0 and the

acceleration potential function p has been established by solving the

Euler equation of motion:

'4
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¢( ~ , ; ) = - Jf ji(t, r, ¢;t - --- ) +(4)

-01(

where U is the undisturbed forward velocity of the lifting surface and

the integral represents the total effect at time t of all previous ac-

celerations of a fluid particle t present at the observation point x.

For doublets with pulsating strength LPC,p,O)ei Wt at loading

points ( ,p,e) which, together with the observation (control) points

(x,r,9) are rotating with angular velocity -?; (where the negative sign

is introduced to accord with a r-ight-handed coordinate system), Eq. (3)

becomes

I_ i~t) __ _:__ _ __S_ _

(x,r,o; t) = + f Lp.(CP, 0o )ei R' (SfS " 0 'o /*' o

(5)

where w = frequency in radians/sec.

00,90 = angular positionof loading, control points with respect

to blade reference line in moving coordinate system (Fig. 2).

Substituting Eq. (5) in Eq. (4) and identifying the lifzin, sur-

fact as the helicoidal surface, x = o/a or =0o/a, of an N-blaced pro-
0 0

peller yields

1=+ 1 N (q)rT t) = e i  fft  '  AP (FP, O )

where a = SI/U

q = w/R = order of blade harmonic

5 n 2-r(n -)/N, n = 1,2 .... N
n - 1 x)]}/2
R .{(t-) 2 +r 2 +p 2 -2rp cos[0 o +0 (r-x

Then the induced velocity at the control point (x,r, o;t) due to

the loading at (.,P,0 ;t), when both points are located on the propeller

blades, can be determined from Eq. (6). The normal component of the

velocity induced by all elements will be given by

S(x, r ,¢;0) (7)

5l.
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where n' is the unit normal vector on the helicoidal surface at the control

point, having a positive axial component.

The requirement for an impermeable boundary (i.e., no flow through

the lifting surface) is

W + a 4(x,r, o;t) = 0

where W is the known (imposed)perturbation velocity normal to any blade

chord

an0

which expresses the equality of the negative of saif-induced normal velo-

city with the imposed velocity in the downwash (positive n') direction.

This yields the integral .quation for the unknown pressure change LP at

frequency q:

-eiqit () X iqac-x)-6_
-eax qa(~) n ,pMUXfA P~q (C,P,O O) '- f e n n dd B

4LTpfU an Rnn= l S an-Jdd

where

a P (a - i 0)
_n + a r 2  a& p 2 0o

(9)
a r (a a a

an' /1 + aZrr ax r2 40

It should be noted that the left side of Equation (8) is the com-

ponent of the flow normal to the nose tail line of any section of the

propeller blade, whereas the right side is the induced velocity normal

to the helicoidal reference surface. This lack of precise identity in

resolution of the onset flow and the flow induced by all loading elements

is in keeping with the linearized small-perturbation theory employed.

Specifically, the onset flow normal to the nose tail line is (upon omit-

ting camber for the present) expressed by

i 6
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W -- "U+ V-)'-+ (Sr+V ) 2sin(O -tan UV
L T p 2r +VT

where V and VT are longitudinal and tangential perturbation vcflocities.

When this is expanded to secure the first order approximation (aefinad for

the condition VL = VT = 0), we obtain

W 2- 2 (ir)7 sin (0p +(VLCosa _,VTS mG

and, for small values of 0 -S, this reduces to the linear approximationp

W = - 2r+UP (r) Z (6 -8) + (V cosO -V sinOp)*
p L p T p

-l U -

Here 8 = tan U= tan -and O is the pitch angle of tha propeller.
2r ar

It is to be noted also that blades with zero camber, zero thickness

and having pitch angle variation ap E B when set into a flow with zero

perturbation, i.e., VL = V_ = O,will experience no crossflow and, hence,

will develop no pressure loading. Thus, all these quantities, incidence

angle, camber, hull wake and inductions from non-planar thickiness are

considered as perturbations of the reference flow whose direction is de-

fined by 8 and which, by itself, produces zero loading. The effects of

each of these imposed flows on the blades are calculated separately and

simply added together as allowed by the linearity of the theory.

The left-hand side of Eq. (8) can be written in the form

W = Z (q) (r @o 
)e- iqO

q=o

where 0 = - St in terms of a moving coordinate system and V is In

complex form. All but the hull wake are perturbations from the steacy-

state flow only, q = 0, and are analytically computed from the propeller

geometry. The normal wake velocities are derived from an harmonic analysis

of the wake measurements as will be shown in a later section.

See J.P. Breslin, "Determination of the Normal Velocity to a Propeller

Blade Section in a Ship Wake," Tech. Memo. SIT-DL-76-172, January 1976.

7
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On utilizing Eq. (10), the integral equation (8) requires at each

frequency q that

v (q)l(r) e- i q * °  f AP (q) ( ,;j aOO )  K(r,o 0;p,o 0;q)dS (l l) '

S

where the kernel function is given by

N . - x
N -qn i iqa(T-x) n 1

K(r,4 ;p,O ;q) lim - urn L n f- e -(-) dt
0 0 4pfU 6-*o n=l n' -n R

(12)

a n d 6 = ( x ) .
a

The time factor has been eliminated from both sides of Eq. (11) and it

is understood that the real part of the solution must be taken at the

end. The limiting process is introduced in the kernel function to avoid

the mathematical difficulty due to the presence of a high-order singular-

ity. The kernel function is one of the most complex of lifting surface

theory since, in addition to its high-order singularity, it presents

other complications arising from the helicoidal surface and from the

interference of the other blades. Thus, attention is given to the numer-

ical solution of the integral equation by means of a high-speed digital

computer. The analysis has been carried t; ti.c stage where laborious

computations can be efficiently performed by the numerical procedure.

It has been assumed that the shape of the chordwise loading dis-

tribution is the same as that in two-dimensional flow; the spanwise dis-

tribution is left to be determined by the solution of the integral equa-

tion. A method called the "generalized lift operator" technique I is ap-

plied which reduces the surface integral equation to a line integral equa-

tion along the propeller radius. Then, by the collocation method, the

line integral equation is reduced to a set of algebraic equations in the

unknown spanwise loading distribution.

.. ... . .. . . . . ... . .: ' m 1 1 i .... .. .. . . .. ...i~ ii.. . . . . . I.. . . . . . . .Ii . . . I . .. . l ll . ..... . .. . . .. . .. . .. .. . . .. . . . .'.8. .
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I The mathematical complexity of the problem has imposed a series

of concessions with regard to propeller geometry and helicoidal blade

j wake. To save time and expense in computing, a most important concession

was that of approximating the blade helicoidal wake in "staircase" fashion,2

I which appears to be physically realistic. However, with improvement of

the high-speed digital computers, the exact treatment of the blade wake3

j is being utilized.

Following Ref. (3), the substitutions listed below are made in

f Eq. (II),

L()( O AP () •o pop (lb/ft) (13)L(q) (p,0 ) P (, , )

Cb

6 - a- b cose , a _o< (14)

:r b brcos , (15)

im[O - +on-a (-r-x)]
and 1 _ e 0 0(nkJp)Km(iklr)ei(T )kdk (16)

for p < r. (If p > r, p and r are interchanged in the modified Bessel

functions I( ) and K ( ) of the first and second kinds.) Here a is

the angular position of the midchord line from the generator line through

the hub in the projected propeller plane, 0 b is the subtended angle of the

projected blade semichord, e and @ are angular chordwise locations of the

loading and control points, respectively, and the superscripts p and r

refer to values at loading and control points, respectively.

After the appropriate chordwise mode shapes o (n) are introduced,

0so that

L (q)(p,0 a  n_ ma L ( n)(p) E) (n) (17)

n=1

I
I9
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where L(qIn)(p) are the spanwise loading components to be determined by

the solution of the integral equations, the chordwise integration of

the kernel (Eq. (12)) over 0 is performed. Then both sides of the in-

tegral equation (1H) are operated upon by the "generalized" lift opera-

tor ; thus,

w h r(m) {Eq. (11) d (18)0

where

(1) = I - cosa (the Glauert lift operator)

D(2) = I + 2 cos

,(mn) = cos(m-l) for m > 2

A set of line integral equations is thus obtained with maximum

order m equal to maximum n of chordwise modes:

w(q'm) r  n max (,) --
W U (r) = n L(q:;) (p) K(m,n) (r,p;q)dp (19)

n=l p

where
W(q ', ) ()  i= _ ( q) 0 (q) r

°d_ m I f V (r) e- iqo r-n (qW )
U T o

0
(20)r 7F iqO r cos€4

b TrI~m (q0b) =if (m) e~O ad,

0

M-)
I (Y) is given for various m in Appendix A.

The modified kernel function after the e and 4, chordwise inte-

grations is finally (see Ref. 3):

R(-,-) -N r eimA

4 pfU2ro a/l+a=r m=-
m-q+ZN

e i(m-q)AO[a2(m-q) + -L] [a2 (m-q) +-L ]I (;)(qr)A(n)(qOp)
r2  p2

10
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I m(alm-qlp) K m(aim-qlr)

f (ak+ L) m-q_ ) -2 -) k- a(m-q) , b Im(Ikfp)Km(Iklr)dk}

Sp 2
(21)

- T -iz cos(

where A (z) .(n)e Csineodo and ea= ur- aI 0
In Eq. (21), all terms outside the first braces are nondimension-

alized with respect to propeller radius r as is also p in Eq. (19).

A(n)(Z) for various n and 0(n) is also given in Appendix A.

I The integral equations given by Eq. (19) with the kernel given

by Eq. (21) are solved numerically by the usual collocation method, with

the loading L (qn)(P) assumed to be constant over each small radial strip.

Then only the kernel needs to be integrated over the radial strip.

I Reference 3 details the analytical development and the various

numerical procedures to obtain the finite contributions of the Cauchy-

type singulari ty of the k-integral at k=a(m-q) and of the higher order

Hadamard-type singularity when p = r.

2. Chordw.se Modes

The proper selection of chordwise modes is dictated by the loading

distribution on a foil in two-dimensional flu.'. Thus, in the unsteady

flow case, the unknown loading function is approximated in the chordwise

direction by the known Birnbaum distribution which has the proper lead-

ing edge singularity and satisfies the Kutta condition at the trailing

I edge. In this case, Eq. (17) is

L (q) (PO n ma x L ( q ' n ) (p) O(n)

na max

I( q l t 2 _X L(q'n) (P) sin(n-1I)e } (22a)

j In the steady-state flow condition, the chordwise mode shapes

are selected to conform to the observed pressure distributions of the

NACA foil sections. Furthermore, the analysis and corresponding program

is divided into two parts, for design and off-design propeller conditions.

1 11
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At design advance ratio J, the propeller operates at almost optimum ef-

ficiency and the chordwise loading distribution due to blade camber,

thickness, angle of attack and inflow conditions (mean wake effects)

does not deviate much in shape from the loading distribution of an air-

foil in two-dimensional flow. At off-design advance ratio, however,

the same propeller in the same wake is subjected to a change in angle

of attack due to AJ, the difference between off-design and design ad-

vance ratio. The additional load distribution, due to this change in

angle of attack in the off-design condition, is in accordance with thin

wing theory represented by the first term of Eq. (22a).

The camber distribution is a decisive factor in the selection

of the proper mode shapes of the chordwise loading distribution in the

steady-state flow condition, since it is known that many properties of

wing sections are primarily functions of the shape of the mean line.

Thus, the program in the steady-state case deals with two different types

of mode shapes.

The first is appropriate to the NACA-a mean lines characterized

by the fact that the chordwise loading is constant from x/c = 0 at the

leading edge to x/c = a (a varying from 0 to 1) and then decreases linear-

ly to zero at x/c = 1, the trailing edge. For brevity, this type is

designated as "roof-top" loading. In this case, Eq. (17) becomes

Lo(p)) r ), 0 < x <-a

L (o) (p,6 )=L(p) )( ,) (1) (O1x) , a x < I (22b)

I-a

and A (I)(z) of Eq. (21) is as given in Appendix A.

The second type of mode shape in the steady flow case is appro-

priate to NACA mean lines of the 4- and 5-digit wing series (including

the lenticular mean line) and to arbitrary mean lines in general which

are characterized by the fact that the chordwise loading is finite every-

where and zero at both edges and can thus be described by a series of

sine mode shapes:

n m~ax  ('l 2c

L(o)(p,) = T L(p) s inn8, (22c)

n1

12
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It is to be noted that, when the complete Birnbaum mode series, Eq.(22a),

or the cotangent term alone, is used and the solutions for the span-

wise loadings are substituted in the chordwise distribution, a correction

for the leading-edge singularity is introduced based on Van Dyke's and

Lighthill's method4 ,5.

3. Perturbation Velocity Distributions

As mentioned earlier, the left-hand side of the integral equa-

tion represents the positive normal components of the velocity perturba-

tions from the basic flow due to non-uniformity of the flow (wake), to

blade camber, blade thickness (non-planar) and incident flow angle, in

the design condition, and to an additional angle of attack in the off-

design condition arising from the difference between off-design and

design advance ratios.

a) Normal Velocity Due to Wake

This is the contribution of the flow non-uniformity to V(q) (r)/U

of Eq. (20). The Positive normal component (i.e. downwash) of the wake
velocity along the middle chord of each radial strip is given by

VN (r) V ( VT(r)
N U U= cose H(r) - sinO (r)UO~ U pp

where

VL (r) V
1= - + x , perturbation of ur form flow

U U

V (r)
x -measured axial velocity

VT(r)
U = measured tangential velocity

p(r = tan 1  P(r)

p 21r

P(r) = propeller pitch, ft.

r = propeller radius, ft.

r = radial distance in terms of r

13I
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so that

VN (r) V (r) VT (r)

U I] coso (r) - U sine (r) (23)

It is to be noted that the present sign convention requires that,

looking forward, the positive position angles 0 are defined counter-

clockwise from 0 - 0 at the upright position of the blade, that the

axial component of the wake Vx is positive downstream (positive x-direction)

and the tangential component VT is positive in the counterclockwise direc-

t ion.

The harmonic analysis of the measured wakes yields

Vx(r)

a (r) + q [a (r)cosq o + b (r)sinq ]qlq

VT (r) Co

U = A (r) + q [Aq (r)cosqe + Bq (r)sinqe]o q=l

The zero harmonic of the normal velocity is then

vo) (r)
U (aoCr) -1) cO p(r) -A (r) sinp (r) (23a)

and the other harmonics are

V (q ) (r)
N = [aq (r) cosOp (r) -A q(r) sine p(r)]cosqo

+ [b (r) cOsO (r) B (r) sinO (r)] sinqe (23b)q p q p

As stated previously (see Eq. (10), the left-hand side of the

integral equation must be in complex form

__q v(q) v~q)

+ N~ e-iq 1

14.
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and it is understood that the real part is to be taken eventually. The

real part is

v(q) V(q)
(-- s) cosq + (- ) sin qOU R U I

Therefore, the input to the program for the real part is from

Eq. (23b)

v(q) (r)
N U ")R = a (r) cos p(r) -A q(r) sin0 (r) (24)

q p qp

and for the imaginary part

Vr(q (r)
( ")I = b (r) cos (r) - B (r) sin& (r)

U I q p q p

b) Normal Velocity Due to Blade Camber

The velocity V normal to the blade in negative direction induced
c

by the flow disturbance caused by blade camber is independent of time

(since the blades are considered rigid) so that only the steady state

loading is affected. The loading due to camber effect is obtained,

therefore, from the steady-state part of integral equation (19) with

V(° ) (r)/U of (20) replaced by

V (r) +ar afc(r,s)

U c(r) as

2Vl ~~ far fc (r,
r(25)

c(r) sin@ a¢
aa

where
af c (rs) slope of the camberline fc(r,s) given at discrete

points measured from the face pitch line

s (I -cos¢)/2, chordwise location non-dimensionalized
on the basis of c(r)

c(r) = chord in feet

a = angular chordwise position

15
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On application of the generalized lift operator (see Eq. (18))

to both sides of the integral equation, the left-hand side of Eq. (19)

for this particular component, camber, becomes for each order m

V(om) (r) 3f d_
c 2V I/ +a -r7 c f

2 -c( ) c sin a  
(26)

where, as can be seen from Eq. (18), D(m) can be expressed in terms

of cosm . Integrating by parts

I c f f (r,s)cosmSIT f com4 c _

c sin a}, d --c r)sin9

f (r,s)

+ I~ f c (r [m sinm sin, + cosm cos&]d (27)cT s in 79

In the small range near the leading edges, 0 < cos I(0.9) or 0 " s <-0.05,

the camberline is assumed to be parabolic and, in the range cos- (-.8)< o f

or 0.90 f s 'f 1.0 near the traiiing edge, the camberline is assumed to

be a straight line. The integration is done analytically in these re-

gions and numerically over the remainder of the chord. 6 The required

input information is the ratio of camber ordinate f (r,s) to chord c(r)

at 19 equidistant positions from s = 0.05 to 0.95 of chord. For arbi-

trary camber, these ratios are read into the program. The program has

options to compute them in the cases of NACA-a meanlines (;= 0.8, 0.8

modified, 1.0) and of lenticular (sine-scuared) camberline from the ratio

of maximum camber ordinate to chord at each radial position, and in the

case of the NACA-4 digit series from the ratio of maximum camber ordinates

to chord and the chordwise position of the maximum ordinate.

c) Normal Velocity Due to "non-planar" Blade Thickness

The thickness of propeller blades describing a helicoidal or non-

planar surface, as stated earlier, generates a velocity field on the

blade itself and, consequently, affects its loading distribution (in

the steady-state only since the blades are considered rigid). The nor-

mal velocity component due to the effect is

(0) a D(x'r'o;0)
- T (28)

U U Wn

16
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where 3/3n' is as defined in Eq. (9).

Resorting to the 'thin body' approximation, the velocity poten-

tial V is given by that of the source-sink distribution with strength
T I

proportional to the slope of the thickness distribution. In the case

of an N-blade propeller, the velocity potential is given by

N M( ,PO) /1 +a 2 pz pdpdo
T= f R ap o (29)

n=! 0 po
0

Here the source strength M is

df (P,O) ;f (C,P,Oo

M(C,p,O o ) = 2U Vl +a 2p2  T = 2U T0 s 2U

where f ( 'POo) thickness distribution over one side of the blade
section at radial position p in the propeller plane.

The Descartes distance R is

R = ((x-j) 2 +r 2 +p 2 -2rp cos(6 - +6 )}

where x= /a (ur 0 rcos )/a , 0 T_-<_
0 b a ~ C

=e o/a = Cu- Ocoso )/a , 0 < " <

n 2ir(n-l)/N , =1,2,...Nn

If the reciprocal of R is again expressed in a series as in Eq. (16),

then

S1 r imC9 +e (x-C)- - (o +n) (ak+ -2-)(IK)m e dk-- ' T T / + a r m-W r

where (K)m Im(jkjp)Km(jkjr) P < r

Im(Ikjr)K (jkjp) p > r

N ime n N for m = ZN, Z = 0, +1,+2,...
Since X e n

n=l 0 for all other m

and do =0bsinO dO and a
0 b cc OpsinO aO

b Ot

Equation (28) can be reduced to

17
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V (r) iNr e imA f (PO ) - a

U 2ir2 7 1 +a 1 r mI=- o p 90
m=ZN

i Ak/a i(k-am)0OPcos0 /af (ak+--- (IK) e eb a

Orcoo/

e-i (k-am) bcosp /adk do dO (30)
C1

Before the 0 -integration can be performed, it is necessary to

supply an analytical expression for the thickness distribution fT(P'0a

When the NACA 4 and 5-digit wing series were derived, it was found that

the ratio of thickness distribution y to maximum thickness t of effi-

cient wing sections were nearly the same when their camber was removed

(mean line straightened). 7 The thickness distribution of these sections

is given by

yr =+ t
_ 0__ (1 .4845v'x- .630x- 1 .758x2 + 1 .4215x3 - .5075x 4 )

c c

where c is the chord length, x is the chordwise location, 0 _ x _ 1, and

the coefficient of Vx is equal to / °, D being the ratio of the lead-

ing edge radius to the chord c. In general, for any propeller the blade

thickness distribution in the projected plane can be approximated by

to(P)
f :(p,0) 2po p  ( /2 pO-(p)  cx+ 0 - [ax -+ bx2 +cx 3 +dx4]}

1 -cosO

and with x : c, 0 < <

6 to(P) 4
f (PO )=2p0O {v', -( sin f+---(--[a (c) + I a (P)cosn ca]}
T U b 0P 0 n=l n

(31)

where fT and p are fractions of propeller radius r0 , p (p) is the ratio

of leading edge radius to chord length c(p) at a given radial position

and t /c is the ratio of maximum thickness to chord at that radial posi-0

tion. The coefficients of the fourth-order polynomial in x are calcul-

ated by the "least squares" method and then with the trigonometric sub-

stitution for x, the coefficients a of Eq. (31) are obtained and insertedn

in the input to the program.

18
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The slopes of the thickness distribution are, from Eq. (31)

afT(p ,0) e T o(p) 4
pep f2p PT cos -2 P na (p~sin nO 1 (32)

Ct b o 2 bT7 n n

Lett ing
Letting It f (p,8 i((k-am)OOIa~cosG

A((k-am)6P/a) f *a e b a do (33)

0 c

and applying the generalized lift operator, Equation (30) becomes for

each lift operator mode m

(ov (r) i Nr = imAo

U 2Y 2 elf+a2 r 2  m _- p

m=£

IK) e iAok/a (m)((am-k)or/a)A((k-am)OP/a)dkdp
r2 Mbb(3 4 a)

Let u k - am, then

(r iNr _ft ap
U 22 I 1 +aZrz

[ Aau/a
Sf(au+ZN(a2+2-I) ]I N(ju +aZN')K N(ju+a9Nlr)e

- ~ r2  NZ

. ) (_UOb/a)A(u60/a)dudp (34b)

(for p < r).

Finally

_('_;) (r)i '0G

T =- r " /I + a2pz f Im.Part{eiAOu/alI)(U~b/a)A(UOb/a))
U 2TF- -a2 r p O b

(up)K (ur)+ au, +t 4(a2+ L) 3( juN( u+ aN p)KuN( u+aZNlr)

2 {aUl+ I

+ [au-kN(a 2 r '-2)) u-aIsp)KN(u-atNlr)])dudp (34c)

19I
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(for p<r, otherwise p and r are interchanged in the modified Besse)

functions.) As can be seen from Appendix B

t__(_) t6
'A A) = ~ p /2 -- 7p B X) - p~ 0 {2a (p) G (X) + 3a3(P) [6G ( ) - F (X)]

+ i Ba2 (p) F(X) (35)
32a (Q) 1

+ i [4G() + (A--)F(X)]}

where B(k) = f ei cO s cos dO (See Appendix B, 5)
0

G(X) = s in

F(X) sinA-A cosX
X2

(It can be shown that when u = 0 the integrand of (34c) is zero.)

d) Normal Velocity Due to Flow Angle

The incident flow angle has been defined as the difference between

the geometric pitch angle 0p(r) = tan - (P(r)/27rr) and the hydrodynamic

pitch angle a(r) = tan- (I/ar) of the assumed helicoidal surface. The

normal velocity (in the positive direction) Vf (r)IU due to this effect

depends only on the radial position, not on the chordwise 4) position,

and is given by

V(0) Hr
) r += /+aZr7(O p(r) - 6(r)]

Therefore, after application of the generalized lift operator, it becomes

V o)(r){= +- r P r) - a(r)] for m = I or 2 (36)

U 0 forn> 2

since 1 (1) (0) = 1 (2) (0) = I and I(m>2)(O) 0 0. (See Appendix A)

In Eq. (36) a = fr/J where J is design advance ratio. At off-design

advance ratio Jod' the propeller is subjected to a change in angle of

attack due to AJ = J od J. The normal velocity perturbation due to

this change in angle of attack is
20
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I -= {-/I +aodrZ[O (r) - tan - 1 ] al +a 'r' [oP(r) - Br) (U/Uod)

Uod od p(37)

for m = I or 2, where aod = r/J and Uod is the off-design forward velocity.
od od o

4. Blade Pressure Distributions, Hydrodynamic Forces and Moments

and Blade Bending Moments

a) Pressure Distribution

After the integral equation (19) is solved for propeller spanwise

loading components L (qn)(p ) (lb/ft) due to the various perturbation

velocity distributions, the spanwise loading distribution is determined

from Eq. (17):

L (q ) ( r )  = L  ( r ,  )sinO dO

0

l n max (qn)(

= _Z L ( (r) 0(n)sine de (38)
o n= I.

For the unsteady loading due to wake (q # 0), the complete Birnbaum

series is used with the chordwise loading distribution given by Eq. (22a).

The spanwise loading distribution is, in this case,

(qo sQ +n max (q.n)

L (r) TrL 
1  (r)I + c o s O  L L (r)sin(n-l)O sine }dO

0 n2 C cL .

L ( q ' ) +L (q,2) (39a)

For the steady loading due to AJ in the off-design condition, the span-

wise loading distribution is the first term of Eq. (39a).

In the steady state case (q = 0) for NACA a mean line blade sec-

tions, the chordwise loading distribution is the so-called "roof-top"

distribution, given by Eq. (22b), which can also be expressed as

L(°'l)(r) for 0 < O < cos - (l-2a)
(o 1 + cosO -

L r- for cos 1-2a) <e T,
2 )(1 -C)

The spanwise loading distribution in this case is
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cos (l-2a) T, (l+cose)sinC dOc}
L(°r) L)(r){ f sinO dO + 0a

0 2(1-a) cos (l-2a)

= L (ol)(r) (a+ ) (39b)

The steady chordwise loading distribution for NACA mean lines

of the 4- and 5-digit wing series and for arbitrary mean lines in gen-

eral is given by Eq. (22c). The spanwise loading distribution is then

given as

(0) =L(on)
L( r) T L (r) sin n 0 sinO dO

o n=l

L 1 (°'I) (r) (39c)

The chordwise pressure distributions in lb/ft 2 are obtained by

dividing the chordwise loading distribution by the semi-chord in feet

(see Eq. (13)).

Whenever the cotangent Birnbaum mode is used, the Van Dyke or

Lighthill correction',5 is applied to the chordwise pressure distribu-

tion to remove the physically unrealizable leading edge singularity.

Their simple rule for obtaining a uniformly valid solution is

= + P o/ 2  i

where C = pressure coefficient according to first-order thin airfoil theory
P I
s = ()-cosa )/2 = chordwise location from the leading edge in

Ct

terms of chord length

P = leading edge radius of the profile in terms of chord length

The modified chordwise loading distribution is then
(q r, - cosO (q, I) + (qL~'n) (r)sin(n-l)C

L (q)(r, ) ( ){L (r)cot -2- + tL ;a 7r +P0oaCL2

n=2 (40)

Since the pressure near the leading edge is governed by the first term

of (40), viz.,
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I -cosO 0 s;nO

I+P -cosO Cot - p -cosOo a o

the location of maximum pressure near the leading edge is determined appar-

ently from s
d

T I + p -cosO 0

Thus (cosO) max l/(lI+p ). This is the chordwise location of

a point where the maximum pressure near the leading edge will occur after

the application of the Van Dyke-Lighthill correction, provided Po is not

too large. If Po > .015, the sine series of (40) will influence the

location of maximum pressure near the leading edge.

b) PropeZler-generated Forces and Moments

The principal components of the hydrodynamic forces and moments

which are evaluated are listed below and shown in Figure 1 with the sign

convention adopted:

Forces: F = thrust (x-direction)

F and F = horizontal and vertical components,
y z respectively, of the bearing forces

Moments: Qx = torque about the x-axis

Qy and Q. = bending moments about the y- and z-axis,
Y respectively

The total forces at frequency ZN(Z =0,,2...) induced by an N-bladed

propeller are determined as (see Appendix C)

F Re {Nr e LNSt L (XN) rcoso rdr)
K0 .p

Fy R 0 iY. Q [L (ZN-1'n) (r) A(;)( r) + L( In)(r)A(n)(oa]

ns1

sino (r)dr}
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-N r 1/ - -

F aRe f" e f IL ' (r)A (Gb) L ' (r)A b
7 21 b

sin( (r dr) (41a)P

The moments are determined by:

Qx = -Re {Nr 2 e UN~t L LN(r)sino (r)rdr}
Sop

0
N r 2  . 1
N 1 [0N1,n) (n) riprN+t (r) }rdrrQz Re e { X L' ' (r)A (-b) + L (r)A (b)Icos r)

o ninl

+ L -~)r.~ > (e) rj (tN+l1n)()A l (Gr( )](ier> sfnOp (r) tan (r)}rdr
n= 4n

wee n)z)andA'(n)() Garie np d A

nt [L snr q.(41) tat the WrAn)rse beartinforce W

and bending moments are evaluated from propel ler loading components L (qn ) (r)

associated with wake harmonics at frequencies adjacent to blade Frequency,
i.e. at q= N- 1, whereas the thrust and torque are determined from the
loading ()( r ) (given by Eqs. 39a,b,c) at blade frequency q = iN. At (=0

(steady-state) the mean transverse forces and bending moments are deter-

mined at shaft frequency. Thus:

Nr r

=Re { 20 f[ I L('' (r)A ( ]b)lsinep (r)d r }

0 1

Nr I,-
FN (L,n) A (6 r)lsinO (r)dr}

02i ; b p
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Nr 21

Q = R F L (r (Or) cos0 (r) -
y 2 (rZA p

0 -n=l

[ L 'sinO (r)tanb (r)}rdrf

n=l

- NR 2 1
z e 2 0 L ' (r)A : cos (r) 

0 -nn=

L n t ' }(r) I(n)})'r r 0') t dr4 c

n=l

All forces and moments can be written in the form

Re [ C ( q ) e  q e 'qO = C cos = C()cos(q -q

where 0 is blade angular position, positi've 'n t;i counter-clocjise

direction from zero at the upright position (12M), q is order of shaft(q)

frequency, C(q ) is magnitude of force or morent, and q is phase angle

(electrical) determined as the angle whose tangent is the imaginary part

(sine part) over the real part (cosine part'. (The program output gives

C (q)and q.)

In comparing phase angles with those of experiment, care should

be taken to ascertain if measured values refer to lead or lag position

and if the quantity considered is at peak or trough. When the theoret-

ical q is positive, the peak (or trough) of the quantity is to the

left of the upright position, i.e., leads. When 4 is negative, theq
peak (or trough) is to the right of the upright position and lags that

of input.
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c) Blade Ben, ding Moments

The blade bending moment about the face pitch line at any radius

r. of a blade is calculated from the chordwise integrated loading (span-

J (q)
wise component) L (r) at any shaft frequency q as

( iqt 2it e r( () cos (r) -e (r.)I(r-r.)dr

rj (42)

The positive blade bending moment about the face-pitch line is that

which puts the face of the blade in compression (see Figure 1).

The instantaneous blade bending moment distribution when the pro-

peller swings around its shaft in the clockwise direction is

R e Mqe - iq O = 7jMblcos(q -) (43)q q q

where q is the phase angle (electrical) determined by

-l (Mq)
= tanq ~ (M )Re

b

and (MqN (M ) are real and imaginary parts of ?

bjRe' b Im b

It should be noted that in the program the value of r. of Eq. (42)

is limited to any of the midpoints of the radial strips into which the

blade span is divided, at which points the pitch angles, as well as other

geometrical characteristics, are given as input. The bending moment at
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I
any other radial position can be obtained by interpolation or extrapola-

tion. For example, for r < (rI  Ar), where r 1 is the midpoint of the

initial radial strip from the hub, rh, and Ar is the span of the radial

strip (r] . rh + Ar/2), the bending moment can be estimated as

[Mb(rl) Mb(r2  +Ar)
M b(r ) b (r) -Ar (r. - r )

For the case of bending moment about the root rh, this formula gives

Mb(rh) =M (r ) + Mb(rl) -Mb(r 2)

5. Frictional Thrust and Torque

To obtain the frictional contribution to thrust and torque, one

must resort to empirical formulae for the frictional coefficient in tur-

bulent flow since, in this case, the theoretical analysis is extremely

difficult. Hoernera suggests a formula based on statistical analysis of

measured velocity distributions across the boundary layer, viz. the Prandtl-

Schlichting formula for the friction coefficient for one side of a smooth

flat plate of length c:

CF = 2.58 (44)
(log 10R)

where R is Reynolds number based on length c (of the expanded chord)c

i.e., in the nomenclature of this paper,

R (r) U Vl +a 2 rZ c(r)
c V

where v is kinematic viscosity.

Because of thickness, the average velocity around a symmetrical

foil section is higher than that of the undisturbed flow, the increase

being proportional to the thickness ratio t /c. For the conventional0

section, the total frictional drag coefficient is approximated by
8

to (r)
CD(r) = [2 CF(r)](1 +2 c (45)
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Although no allowance is made for viscous pressure drag, nor drag

associated with the deviation of the local flow direction from that along

the nose-tail line, this formula agrees basically with theoretical analyses

of skin-friction drag and is substantiated by experimental results 8 .

Taking AFD(r) (elemental friction force) as the friction force per

foot of propeller blade span with

AF(r) = pfU 2 (1 +a 2 r2) c(r) CD(r) (46)

for an N-bladed propeller, the total force in the positive x-direction

and moment about the x-axis due to skin-friction drag are

F x = N f" AFD(r) sine p(r) dr

and r

QDx = N f 6FD(r) cosO p(r) rdr
r

On substitution of (44) - (46) and noting that the expanded chord length

is equivalent to

2rr 0r
c (r) o

cos 0 (r)
P

where r is a fraction of propeller radius r, the frictional thrust and

torque become

I t (r)
FDx = Nr2 PfU2 f2CF(r)[l +2 ---y-](l +a2r2)rer tane (r)dr

o 0(47)
] to(r)

Q = Nr3  U f2C(r)[l +2 2)r r
Dx of --- ] (I ar 20b dr

0

FDx and QDx are added algebraically to F and Qx, respectively,

as calculated in the preceding section. Thrust will be decreased slightly

and torque increased more noticeably.

As was mentioned earlier, this is a first attempt to incorporate

the frictional thrust and torque in the program; in the event of any

improvement of the estimated frictional coefficient, this portion of

the program can be easily modified.
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I
B. Thickness Effects (Non-lifttn21

With the propeller in translatory and rotational motion, an addi-

tional flow disturbance is generated about the propeller blade section

due to the blade thickness distribution; the fluid is pushed equally to

both sides, influencing the pressure distr;bution on both suction and

pressure sides of the blade without contributing to the net blade load-

ing. As noted previously, this effect will occur in steady flow condi-

tions only since the blades are considered rigid. The pressure distrib-

ution resulting from this ''flow distortion" thickness will be studied

in this section by means of the ''thin body'' approximation.

The velocity potential due to source-sink distributions approximating

the symmetrical thickness distribution of an N-bladed propeller is given by

LR;O) -- if dS

n=l S

a PO bsin O dO D (48)
n=l oJ R a b c L

where the source strength is

f (P,S) O f ( , o

M(p,s) = 2U /T +ads 2 T 2U
_____ ds = 2

the Descartes distance R

[(x- )2 + r2  + p2 - 2rP cos(e - n)] 1/2

s is measured along the chord of the blade section and the otner symbols

are as defined in section A (see Eq. (29).

From Bernoulli's equation, the linearized pressure P is

P (xr,.o) -pfU (9' + a

Hence fu 2  N IT f (r, O )
(xr ro X ff H ( _/+ Y P r p- sin0 dO d;T 0 2,a na op x a R b C bn=l o p 0(49)
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if use is made of the expansion

'im(Uo +] ' j ~ x

7im u - [ (1K) e kdk

where

(1K)m =Ir (!k) K (lki r) for Q < r

I (:kjr)KM(Jklp) for r < p

then

L eo . (k-am) (IK) e i(x-)kdk (50)() R -, M=-- m).
aJ m-m-

Since

/a = (up -Op coso )/a
0 b '1

fT ( ' j' o ) a - ; f ( 1

P sin, U a

b

N1 in, rN + +

Also e n for m = 2N, =0, -1, -2...

n=l 0 for m #i N (52)

On substituting (50) - (52) In Eq. (49), the pressure becomes

iN0fU2 7 7 f (0,0 )
P T(xr,t O) = 30 f T

0'' c
0 P cc

m i (0o- ) ° i(x- ) k
/ e f (k-am) (IK) e dkd6 dp (53)m CL

m= ,

With the trgonometric transformations for 0 and io

it;,U ' , )f (; 0 )-im o m(rc°S c - 610C056
00P (x,r,;o) = 2-7  (; ;" e ) a~ je em imGb 0

%a

ik (bcoS - O4 coso )/a
(k-am)(le e ikLa b ci b a dkdO dP (54)

m ci

The 0 -integral is as before (see Eq. (33) of Section A)
'3
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II f (p,O) i((k-am)Ob/a)cosOc d(A((k-am)u P/a )  f T. Do CL Ld L(5

0 a

which is evaluated in Eq. (35).

As in the case of "non-planar' thi.kness effects, the thickness

distribution can be represented by Eq. (31) and the derivative with re-

spect to 0 by Eq. (32). After substituting (55) and folding the m-series

to m O to + -, the pressure of Eq. (54) is brought to

iNp fU
2

P(xr') f / +ap
p

r
k(orAc-0bCOS% )/a

{ f A(k0b/a)k(IK) 0 e dk

M coi(k-am) (Ao0cos )/a

+ X (K) [A((k-am)b/a) (k-am)e ( CL

m=N,2N _oo b

+ A((k+am)60/a)(k+am)e (k+ab) (MO0brcOSc)/a dk}dp (5')

Let k-am=u in the first term and k+am=u in the second term of the

second k-integral. Then this integral can be written (for p < r) as

M r
I J[A(u0; /a)ueiu(A G s_-bc ) la

reN , 2N 
b

Im(lu+amlp)KM(u+amir) + Im (Iu-amIp)K m(n-amlr)]du
M iu( 0 6 c s /

- 2i f {ImPart[A(uOl/a)eiu\A° - b cos¢)Ia] 1
m=N,2N o

u Im(u+amIp)K(!u+am Ir)+ i(lu-am!p)Km(iu-amr)]du

and Eq. (52) becomes finally

2P~ (xr, o ) =-N% /~-"- U

Cooi 
(0 0r o

I imPart[A(uGPla)eiU(A Ob cosL)la]

M
u l 0 (up)K (ur)+ (I (u+aml+)Km(Iu+am ,1)

0 0 m=N,2N m

+ I (1u-amlp)Km(lu-amlr)]}dudp (57)
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for p < r. (If p > r, p and r are interchanged in the modified Bessel

functions. Note that a,p,r,u are non-dimensionalized by propeller radius

r .)
0

It can be proved that the integrand is zero when u=O. When p'-r,

the p-integral has a logarithmic singularity. (This is shown in Appendix

D). Although a logarithmic singularity is integrable, nevertheless,

since the integration is performed numerically rather than analytically,

special precautions must be taken in evaluating the integrand in the re-

gion of the singularity. The procedure is described in Appendix E.

C. 5b; Prcssie;u Distributions Due to Loading and Thickness Effects

on Each Blawi Face

The total pressure distribution on each blade face is a super-

position of the pressure P due to the thickness effect which produces
T

no lift, on the pressures arising from the effects of "non-planar" thick-

ness, camber and angle of attack of the blade and of spatial nonuniformity

of the inflow field. Thu last four components contribute to the lift be-

cause each produces a pressure difference AP between the back and front

faces of the blade surface. On the suction side (back face) the pressure

due to the loading contributors is 6P/2; on the pressure side (front face)

the pressure is -AP/2.

Since the blade is considered to be rigid, the non-lifting thick-

ness effect will be present only in the steady state. In this case (q=0)

the blade pressure distribution is made up as follows:

a) On the pressure side

(o) - (o) (P) - (1) - )p + P 158)P + = P

p 2 W 2 c 2 f '2 npt

b) On the suction side

p(o) = (o) + + (Ar) + P()

s 2 w + ( )c (2)f 2 npt

where the subscripts, w, c, f and npt refer to wake, camber, flow angle,

and 'non-planar" thickness, respectively.

For the unsteady flow case, q #O
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aP (q) = (6) (60)p 2 w

((q)
b) Psq = (6-)wq) (61)

Having determined the pressure distribution on each side of the

blade for all frequencies contributing significantly, the instantaneous

pressure, which is the sum of the blade pressures due to all frequencies,

can be evaluated as the blade swings around its shaft (see the following

section D). The instantaneous pressure on the front (pressure) or back

(suction) face at a given radial position r is, when the propeller swings

around its shaft in the clockwise direction from its upright position

(at 12 o'clock):

-(r) = Re Y p(q)(r) eiO = jP(q)(r)lcos(qO- q) (62)
q=o q=o

where

(P (q))

= phase angle = tan 
I Ps Im

q (p (q))
p,s Re

and the subscripts Reand hlindicate the real and imaginary parts of

P(q)(r). (a and y are negative in the cloV' -.;se direction.)p's " q

D. Information Relative t/ Blade §trs, .vs z 2a:'itaton Study

Having determined a realistic blade hydrodynamic loading at all

frequencies of importince for a propeller operatinq in non-uniform in-

flow, taking into account the exact geormetr (skewed or unskewed blade

on a helicoidal surface) and the ,utual interaction of the blades, both

the structural analysis of the blade (displacement and state of stress)

and the cavitation study can now be undertaken.

A stress analysis based en the finite element approach and the

correspondinqi program adaptable to high-speed dirital computers, both

j developed by Mechanics Research, Inc., are now available at CDC conputer

centers world-wide. Designated as STARDYNE, this program has been used

j extensively for static and dynamic structural analysis.

33
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Experience at Davidson Laboratory9 with this program for the struc-

tural analysis of a propeller blade has suggested the format of the out-

put of the DL program for blade loading distributions to suit the required

input to the STARDYNE program. The DL program provides the mean and time-

dependent blade loadings at all significant shaft frequencies at 19 points

along the chords of eight radial strips. The program can be easily

changed to evaluate the chordwise pressures at a greater number of points.

However, since the number of radial strips governs the size of the kernel

matrix, a finer mesh in the radial direction will be more easily achieved

by interpolation of the values between adjacent radial strips.

The instantaneous blade loading, which is the sum of the loadings

due to all frequencies with proper phasing, is applied as an input to the

static STARDYNE program. The angular interval between successive blade

positions can be refined, depending on the type of wake. In the case of

a container ship with sharp wake peaks at 12 and 6 o'clock, a finer spatial

mesh is required and a small angular interval, such as 10 degrees, is ad-

visable during the complete revolution of a blade.

The blade pressure-jump distributions due to loading at each shaft

frequency can be extracted from the output of the main program and recorded

on a magnetic tape to be used in an auxiliary program to evaluate the in-

stantaneous pressure jumps in a format required by the STARDYNE program.

Another feature of the DL program providce; information for prediction

of cavitation inception. The blade pressures due to loading and thickness

effects on suction (back) and pressure (face) sides of the blade which have

been calculated at all significant shaft frequencies will be similarly ex-

tracted from the general program and recorded on another magnetic tape.

Another auxiliary program will use this tape for the evaluation of the

instantaneous pressure coefficients,

C = I P (63)
2 PfU(1 +ar 2 )

on suction and pressure sides of the blade separately as the blade swings

around its shaft (see Eq. (62)). These values must be scanned to determine
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the minimum pressure coefficient for use in predicting the locations

for cavitation inception.

Also extracted from the general program and recorded on magnetic
tape, for possible future use, are the loading solutions L (r) for

all shaft frequencies q and mode shapes n at the various radial posi-

tions r.

3

ft

I
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II. NUMERICAL RESULTS

The theoretical procedures developed in the preceding sections

to determine the blade pressure distributions due to loading and thick-

ness effects have been adapted to a high-speed digital computer (CDC 6600

or 7600). The computer program provides the resulting hydrodynamic

forces and moments and blade bending moments as well as the blade pres-

sure distributions on each blade face in steady and unsteady flow condi-

tions. As noted, the unrealistic leading edge singularity introduced

in the blade chordwise pressure distribution by the cotangent term of

the Birnbaum distribution is removed by the Van Dyke-Lighthill correc-

tion method. In addition, the frictional contribution to steady-state

thrust and torque has been approximated by using the Prandtl-Schlichting

formula for the friction coefficient, without taking into account the

viscous pressure drag or the drag associated with the deviation of the

local flow direction from that along the nose-tail line.

A set of calculations has been performed for the series of 3-bladed

propellers of expanded area ratio EAR = 0.3, 0.6 and 1.2 which had been

studied in Reference 3 under the assumption of zero thickness, and for

which experimental data were available from controlled NSRDC tests 15 ,16 ,17

in nonuniform inflow with wake structure rigidly specified (screen wake).

The propellers, with destroyer-type blade outlines and modified NACA-66

section with a = 0.8 mean line, were one foot in diameter with hub diameter

0.2 feet and pitch ratio 1.08 at 0.7 radius. Relevant geometric charac-

teristics of this set of 3-bladed propellers are given in the tables below.

The ratios of maximum camber to chord length are given in Table I, of

maximum thickness to chord length in Table II and of leading edge radius

to chord in Table Ill.

Ratio of ,',.xi, an Camber to Chord, ta/c

Radius ER = 0.3 EAR = 0.6 EAR = 1.2

.25 .0370 .0228 .0196

.35 .0388 .0231 .0202

.45 .0372 .0224 .0196

.55 .0340 .0212 .0185

.65 .0312 .0203 .0177

.75 .0290 .0198 .0170

.85 .0270 .0189 .0160

.95 .0247 .0174 .0147
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TABLE II

Ratio of Maximwn Thickness to Chord, T /C

Radius EAR = 0.3 EAR = 0.6 EAR= 1.2

.25 .253 .090 .032

.35 .192 .068 .024

.45 .146 .052 .o18
I.55 .113 .04o .o4

•.65 .087 .031 .011

.75 .068 .024 .0086

.85 .052 .018 .0066

.95 .045 .016 .0057

TABLE III

Ratio of Leading-edge Radius to Chord, Po

Radius EAR = 0. 3 EAR = 0. 6 EAR = 1.2

.25 .0410 .00525 .00066

.35 .0236 .00290 .00039

.45 .0136 .00170 .00021

.55 .00817 .00100 .00013

.65 .00484 .00060 .00008

.75 .00296 .00035 .00005

.85 .00173 .00025 .00003

.95 .00133 .00020 .00002

The coefficients a (p) in the thickness distribution given by
n

Eq. (31) are presented in Table IV for all three propellers and all

radial positions. The thickness distribution variations with EAR and

radial position are determined through the -E /c, p and 0b factors of
D0

Eq. (31). (Note that the procedure for calculating a (P) is given onn

page 18.)

TABLE IV

Coefficients a (p)
nn an(O)

1 0.5491

2 -0.1165

3 0

4 0

The tests had been conducted in the NSRDC 24-inch water tunnel

using the closed-jet test section with a screen to produce the wake, a
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3-cycle screen for the force along and moment about the longitudinal

axis and a 4-cycle screen for the forces along and moments about the

transverse and vertical axes. The tests were run at a constant speed

of 15 rps with free stream velocity close to 12.5 ft/sec. The design

mean thrust coefficient KT was 0.150 (practically open-water value in

the 3-cycle screen wake), the advance ratio varying slightly from propel-

ler to propeller17. Wake information is given in Table V for 3- and

4-cycle screen wakes. Note that the Fourier coefficients aq, bqI A' q

and B of Eq. (23)f can be easily determined from the information given
q

in this table.

TABLE V

Wake Information from Harmonic Analysis

of 3-Cycle and 4-Cycle Screen Wakes (Reference (16))

Radius 3-Cycle Wake 4-Cycle Wake
C3 3  C4 4

0.2 0.089 180 0.050 0

0.3 0.186 100 0.134 0

0.4 0.220 60 0.170 0

0.5 0.218 20 0.184 0

0.6 0.203 0 0.192 0

0.7 0.212 0 0.208 0

0.8 0.230 0 0.224 0

0.9 0.252 0 0.235 0

0.95 0.251 0 0.243 0

Longitudinal Velocity Vx/U = C sin(qQt ) = Cqsin(-qO+q

Tangential Velocity VT/U = 0

The computations were run for a series of advance ratio in the

steady-state case, design J and J = 0.7, 0.6 and 0.5, and at design J

in the unsteady cases. The values of design J were 0.841, 0.831 and

0.844 for EAR = 0.3, 0.6 and 1.2, respectively.

The calculated mean thrust and torque coefficients at design J

which include the effects of mean wake, camber, flow angle and nonplanar

thickness on the loading and, in addition, the frictional thrust and

torque, are compared with experimental data 1 7 in Fiqure 4. Calculated

results are also shown without the frictional part.
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Figure 5 exhibits the steady-state chordwise pressure distribution

at one radial position, 0.65ro, on the suction and pressure sides of the

blades for all three propellers, at design J. These were obtained from

Eqs. (58) and (59), for the pressure and suction sides respectively.

Figures 6 and 7 compare the calculated blade-frequency thrust and

torque coefficients and phases with the experimental data of Reference

16 using the blade-frequency (third) harmonics of the screen wake given

in Table V. The earlier calculations of Refs. 15 and 3 were based on

wake measurements reported by DTNSRDC which were taken with the screen

open sections at a different position. In Figure 6, the phases (electrical)

are given in accordance with the Davidson Laboratory definition on page

25 of this report. Figure 7 shows the mechanical phases according to

Reference 16 and to Davidson Laboratory.

Figures 8 and 9 present comparisons of calculated and experimental

blade-frequency transverse forces and moments of the three propellers

at design J. The calculations use the harmonics given in Table V for

the 4 -cycle screen wake in which the tests were conducted16 .

Figures 10, 11 and 12 show the blade-frequency chordwise pressure

distributions at 0.65r, for the three propellers calculated as in Eqs.

(60) and (61). The leading-edge singularity has been removed by the

Van Dyke-Lighthill correction method (see Eq. (40)).

Calculations have also been conducted for off-design J = 0.5, 0.6

and 0.7 for uniform inflows. Figures 13, 14 and 15 compare the chord-

wise pressure distributions at one radial location, 0.6 5r for the three

propellers at design J and J = 0.5 and 0.7. These blade pressure distrib-

utions agree qualitatively with experiments of Mavlyudov 18 (USSR). No

other experimental information is available for comparison.

Having evaluated the pressure distributions in the design and off-

design flow conditions, it is possible, in principle, to determine the

cavitation inception of an operating propeller. Cavitation is assumed

to ensue when the local pressure falls to the value of the vapor pressure

in the fluid. The speed Vi(r) of cavitation inception is known to be

j given by
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V(r)

where V(r) = U / +a 2 r2 = resultant velocity at a blade section at

radial location r

a= cavitation number or cavitation index

= (total pressure-vapor pressure)/(2 pfV2 )

and C = minimum pressure coefficient, pm/(IpfV2) (i.e., where C
is most negative)

Cavitation is assumed not to occur when a > -C , but will persist as
Pm

long as a < -C , the critical cavitation index being when V./V = 1.0

o r a . = Ic I "
I Pm

The critical cavitation indices have been evaluated as the absolute

values of the most negative pressure coefficients established by the

theoretical steady-state blade pressure distribution curves. They are

plotted in Figures 16, 17 and 18 for various advance ratios versus radial

position and compared there with the experimental observations reported

in Reference 17 for the same set of 3-bladed propellers operating in

open water conditions. Since the experimental cavitation indices 17 were

based on speed of advance rather than resultant velocity, the theoretical

pressure coefficients have also been evaluated on that base (C p/(I PfU2).

Although no experimental values of a i for design J are given in

Reference 17, the theoretical values shown in Figs. 16-18 for design J

are justified by the experimental trends (i.e., extrapolation) in that

vicinity. At off-design J, the theoretical predictions are sometimes

conservative, sometimes non-conservative depending on AJ, EAR and radial

location.

Since inception speed is inversely proportional to the square root

of the minimum pressure coefficient, a. = IC P, whenever the index of

inception of cavitation a. of the experiment is greater than a. of the

theoretical calculation, i.e.

ai(exp) > ai(calc.)
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I
then U.(exp.) < Ul(calc.). This case indicates that the experiments

I

show that cavitation inception is at a lower speed than that predicted

by the theoretical calculations and thus the prediction is non-conservative.

On the other hand, when

0.(exp) < o.(calc.)i I

or Ui(exp) > Ui(calc.), the predicted values for cavitation inception

are conservative.

Figure 16, which is a comparison of calculated and experimentally

observed cavitation index for the 3-bladed propeller 4132 (EAR = 0.3),

shows conservat ie predictions when J = 0.7 or design J, whereas the

predictions are non-conservative, somewhat at J = 0.6 and especially so

at J = 0.5, except near the hub and near the tip. In Figures 17 and 18,

for the 3-bladed propellers 4118 (EAR = 0.6) and 4133 (EAR = 1.2), respec-

tively, all predictions are on the conservative side except those for J = 0.5.

Judging from this set of calculations, the predicted values of

cavitation inception are on the conservative side compared with experi-

',ental observations as long as ,J Jd - J < 0.3. Nevertheless, the

discrepancies which exist between predicted values of the index of cavita-

tion inception and the experimental observations require investigation.

These observed discrepancies must not be solely attributed to the

lack of accuracy of the linearized theory %-wen modified by the Van Dyke

correction. It is well known that visual determination of inception of

cavitation is dependent upon the subjective evaluation of the observer

and is highly dependent on the surface finish and accuracy of the model

in the immediate vicinity of the leading edge of the blades. The variant

patterns of the viscous flow at appreciable angles of attack can involve

laminar separation with vortical flow standing off the blade surface

giving extremely low pressures in the core of the vortex (as cited fre-

quently by Eisenberg, for example) and, hence, inception at o values

larger than the minimum pressure coefficient provided by inviscid theory

on the surface of the blade. Also, from the definitive measurements of

Huang and Hannan 1 9, it can be conjectured that large pressure fluctuations

can occur on the blade surface at the reattachment zone abaft laminar

I separation. In addition, it is never certain that observed inception

is attributed to truly vaporous cavitation or to the expansion of un-

dissolved air.S ~4
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The fact that the experimental a-values are generally higner than

the calculated IC M at the maximum excursion in J (i.e., J = 0.5, LJ=0.33)

suggests that the real fluid effects alluded to above may be responsible.

However, at the larger J = 0.7 (smaller t'J = 0.13), the disagreement is

in the opposite direction except for the first propeller, EAR = 0.30,

where the agreement is fine. Here the fluid speeds are of the order of

twice as great as at J = 0.5 and the pressurc peaks on the blades at re-

duced angle of attack, while lower in magnKtjc, are indeed sharper, i.e.,

the chordwise width of the pressure spike is reduced. One may speculate

that the passage time of nuclei through the region of low pressure is con-

siderably less at J = 0.7 than at J = 0.5 (higher speed, shorter extent)

and that cavitation does not ensue until the u values are dropped below the

IC

The validity of the theoretical curves should be checked by employing

a rational method for finding the effective angle of attack, the effective

camber and the effective thickness of the tv.o-dimensional section (to be

substituted for each bladesection) for which exact steady-state pressure

distributions have been computed. This is not a simple process as was

discovered when ittempting to use the families of curves provided by

Brockett 20 and a rule for finding the effective angle of attack attributed

to W. Morgan. The effective angle of attack was found to be too impre-

cise; a very small error produces a larger ,rcr in the C value.

Clearly, further studies of the prestur2 distribution at the leading

edge of propellers are necessary. The results obtained thus far should be

regarded as quite reasonable. Furtther work may require a precise mechan-

ization of the effective two-di;-iensional solutions using certain inputs

from the three-dimensional propeller flow field, and local sectional

loadings.
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I
CONCLUSION

In this study, a theoretical approach is evolved and a computational

procedure adaptable to a high-speed digital computer (CDC 6600 and 7600)

is developed for evaluation of the linearized pressure distribution on

each side of a marine propeller blade, with the objective to obtain suf-

ficient and reliable information for cavitation and blade stress analyses.I
The essential information for the blade stress analysis is the anti-

symmetric part of the blade pressure distribution, attributed to the non-

uniform inflow (wake), blade camber, incident flow angle and nonplanar

thickness of the blade, all of which are associated with the lifting ac-

tion of the blade and contribute to the hydrodynamic forces and moments

tribution, attributed to the planar thickness and associated with the

non-lifting properties of the blade, contributes to the pressure dis-

tribution on each side of the blade, which is essential for the predic-

tion of cavitation inception.

In addition to the blade pressure distributions at each frequency,

the program furnishes the propeller-generated steady-state and time-

dependent hydrodynamic forces and moments and the blade bending moment

about the face-pitch line at the midpoint of any of the radial strips

into which the span is divided. The program also provides the instan-

taneous blade pressure due to loading alone and the instantaneous pres-

sures on suction and pressure sides, as well as the instantaneous blade

bending moments, as the propeller swings around its shaft. The thrust

and torque due to friction is estimated by using an approximate frictional

drag coefficient; in the event of any improvement of the estimated fric-

tional coefficient, this portion of the program can be easily modified.

In applying the mode approach to the solution of the surface integral

equation, the analysis and the program are divided into two main parts,

one dealing with the steady-state flow case (q=0) and the other with the

unsteady flow condition. The steady-state case is subdivided into design

and off-design conditions. The selection of the proper chordwise modes

in the steady-state flow condition at design advance ratio J is dictated

by the shape of the loading distribution in two-dimensional flow on a

foil with the same camber distribution. At off-design J in the steady-
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state condition, there is an angle of attack due to the difference LJ

(between design and off-design advance ratio) and the additional load-

ing due to this angle of attack is represented by the cotangent term of

the Birnbaum modes. In the unsteady flow condition, the complete Birnbaum

modes are used.

The linearized unsteady lifting-surface theory requires the leading-

edge singularity arising from the cotangent term of the Birnbaum modes.

The ''square-root'' singularity is integrable, but its presence in the blade

pressure distributions is unrealistic and has been removed by employing

the Van Dyke-Lighthill correction factor.

A set of computations has been performed for the series of 3-bladed

propellers for which experimental data were available from NSRDC tests in

open water and in the non-uniform inflows due to 3-cycle and 4 -cycle screen

.akes. The calculated results for the hydrodynamic forces and moments,

steady and unsteady, compare well qith the experimental values. There is

no experimental information on blade pressure distributions for this set

of propellers. However, the blade pressure distribution curves in the

steady-state case agree qualitatively with experimental curvesi8 shown by

Mavlyuuov (USSR) for a different propeller model (NACA-16, a = 0.8 mean

line section, EAR =0.95) at 0.8 radius. In the absence of experimentally

measured blade pressure distributions for the propellers treated, a compar-

ison is made indirectly through the index (t cavitation inception in uni-

form inflow. It is seen that the predicted values of a. = C P are con-

servative except at the smallest off-design J= 0.5 (largest J =0.33).

The cavitation index [Cpm I reflects the blade pressure in the neigh-

borhood of the leading edge and this is dependent on the correction method

for removing the leading edge singularity of the theoretical distribution.

However, the observed discrepancies between theory and experiment cannot

be attributed solely to the lack of accuracy of the linearized theory when

modified by the Van Dyke correction. Experimental determination of the

inception of cavitation is dependent on the subjective evaluation of the

observer. It is also dependent on the surface finish and accuracy of the

propeller model in the immediate vicinity of the leading edge of the blades

and on the undissolved air content of the fluid as well. There is a
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possibility that flow separation and vortex generation occur near the

leading edge and this is not taken into account by the theory. Further

studies, both theoretical and experimental, are necessary. The results

obtained thus far may be considered reasonable.
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A PPANDIX A

I. Evaluation of the-".- and 0 - Integrals of the Integral Equation (19)
TT ()e y  s dq

I) 1 m)( ) e I 7
0

iI 2'
(IY) T J (I-cosc) e "co dc = J (y) - iJl(y)

0
(2 ,Y) IT ycosqp

I(J2) y ( )+2cos) C de = Jo(y ) + i2J(y )

(m>2) I ycos i - 1
I~>)(Y) = TJCos (m- I)t e dqp = i J- (y)

0 rn-i

where J (y) is the Bessel function of the first kind of order n and
n

argument y

(n -izcoso

2) A (z) = 0(n) e sinA dO
0

a) Birnbaum distribution

(I 1 -izcos.
A1(Z) - r cot 2e si = J(Z) i(Z)

0

(n>l) 1 - -izcoso
)(z) = T sin(n-I)?' sint: e d6

0

n-2 -

2 ',J . (z) + J _(z )
n-2 n

b) ''Roof-tn,'' distribution (a mean lines)-I

(Z) (z cos (l-2a) e -izcos sineC

+,TT (l+cosn) - izcoso
+ I 2(1-a) e sinC dG-l

cos (1-2a)

-iz i + 1I i2az i 2 z 1
i 2(1-a)z e
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-(1) 2 s in z
(For a = ], W,)(z) 2 sz

A (n>l)(zW = 0

c) Sine series distribution

A(n) -_ 7n-i c s

A(z) -,1in ne sin9 e d9

n-I n+l

II. Functions Required for Evaluating the Integrandof the Kernel Function

at the Singularity (see Reference 3) and the Propeller-generated

Moments (see section A,4)

1) 1 (y) -- (M) eIYco5c cosp d'z

0

(1) (y) = I rj ]Y _ Y
I = -1 L_ (y- J2 (y) + iJ (y)

(2) (y) = jo(y) _ J2 (y)] + iJ1 (y)

m-2

II >2 (y ) =- 2 J (Y) + J (Y)]

=2 m-2

- i zcos ,

2) Al(Z) (n) sine cose e do ;
0

a) Birnbaum distribution

_2L D - J2 (z)]- iJl(z)P, W)z = J() J2 + _ W z

= [J_ (z) - J ()

(z 4 n-3 n+l

b) "Roof-top distribution (a mean lines)

-( ) iz 'i +I 1 2 - i) i2az
z Z + z2(l- ) z

+ + ) z]J
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0) = sin z)

(For a L , h1  (z) i 2 (cos z - s .z

c) Sine series distribution

Pf,()(Z) ji ) () - J (z)

I n-2 n+2

It is to be noted that the values for negative argunent, i.e.,

W (-y), I rI)&Y) A(n)(-z) and AO) (-z), are the conjugates of the

values given above.

II
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,1PPANDIX B

TABLE OF ]NTL' OF EQ UAT[OI,' (E)

Cos S sin de = 2 sinK = 2G( ) (=2 whenN=

0

2) 4i s in Cos" =4iF(X) (=0 when x=O)2) e s in 2 ad T

0

Cos 2 sinX'3_ 8 8 - 66G(X) F(
3) j e sin3Od =  " in3 - + 2/, cost- = G()

0 A

(=2/3 when A=O)

i cas- 8 _iL 12 + co s ' 2 '

4) O e sinud - -x 21 2

0

8 i _L12'
= - i {40(k) + - F(X) (=0 when '&=0)

(- 2n (K (,)nJ2n- (
i PCe cos - dD = 2J (X) 4 Z (4n+l) (4n-) + (4n-) (4n-3)

0 e 2(0 n=l n=

= B(:,) (=2 ahen k=O)

(Three or four terms of this series are sufficient.)
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APPEiVDIX C

W RESOLUTION OF FORCES AND MOENTS

With the present coordinate system and sign convention (see

Figures I to 3) the propeller, its N blades rotating with angular

f velocity - is assumed to lie on a hel icoidal surface given by

F(x,y,z) = x + - tan I y = 0 (C-i)

a Z

where in cylindrical coordinates

x cp, Ia

y -r sinG

z r cos

;- Qt + e

The unit normal to this surface has components

F, F, F 2
S X z 1, z/ar -y/ar

=2 ~--~ 2~~- (C2
!F + F + F l+a r /ar

x y Z

arso that n = 7T7 - cos

zr
n = z = sin $ cose

~l+ a r

n =s-- -sin inO
1 a r

-1 1
where tan , the hydrodynamic pitch angle.

ar
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The elemental forces are then

AF = AP cos 5 ASx

F AP sin $ cos(t-p -9 n ) S (C-3)
y o n

= - LP sin sin( t-Co- en) LS

z

The elemental moments can be expressed as

i j k

LQ= x y z (AP) (A S) (C-b)

n n n
x y z

so that

QX = AP(yn - zny) AS - AP rsin AS

tQ = - AP(xn -zn x ) LS
y x

= AP-r tanS sin$ sin(Ot-c0  + cos cos(Cit-CPo- n ) AS

AQz = AP(xn - yn x ) AS

= LPr q0tanB sin$ cos(Dt-p 0-e) cos$ sin(clt- o-6n)] AS

The total force in the x-direction (thrust) is

N iq(qt-;)
n W'(q

F = Re Z e L r (r,%0) cosB(r) dS
X nn=} S

Since dS - rdr dpo  rr sinc; d dr, 0 y E T-

LWq ) ( r , c )  6 (q)(r,yo ) r er
b

N ±iqen  r N for q = )N, t=0,1,2,...

and E e =
n=l 0 otherwise
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r i N.t (;N)
F ReiN e L (r, )cos C(r) sin d"- dr-

o r

But L( r ;e) sin r dy = L (2r)() the spanwise loading
0

t he re fo re

iZ I L(ZN)

F Re 'Ntr e L (r) cos (r) dr (C-5)
x 0

0

The total force in the y-direction is

N iq( nt-n) (q) r) cos A n)  dS

F = Re Z e j P r, ) n C()) c (nt- -
Y n=1 S

= R e ' -N -- L ( rq + ( -- t - ).

n= 2o r r

(q-I) ) ( t - i r ,o - i d dr+ n e bsin dc r

N i(q= I N for q =1 = N

Since " e 0 otherwisen=1

i rCos:; (),N+I) - bCOS, 7

N i 'N -jt c -N -b
F Ror e (rj j)e + L (r ,)e

Y o r

sin 3(r) sin ; dz; dr-

The 4 -integrals are

0

T(.t4+1 n) "J b c SZ(r) (n)e sine d

o n=l

= L(2N+ I , n) A(n) (+Q) (C-6)

n=I

where A (+r) is given in Appendix A.b" e



R- 1869

The re fo re
Nr i INt ] (,N-ln) (n) N+ I n (n)

Fy= Re2 e S iLLL (r) A b + L r)
o n=l

sin (r) dr,

The vertical force is

N i q ( t- n) (q)
F = Re Z e L ; AP (r,9) sin (r) sin(Ct-q o- n) dS-
Z n=l 0

and following the steps indicated in the development for F , the forcY

is final ly

.-Nr i2N?2t 1 (N1 ,n) (n) (iN I ,n) ()
iz R 2 e ( L r) b b - L (r) P.

o n=

sin 5(r) dry' (C-8)

The moment about the x-axis (torque) is

N i(Dt-Pn )  (q)i(q

Qx = Re - e e j LP ( sin(r) r dS -
n=l S

and by analogy with F this becomesx

2 i£Nt I (AN)
Qx = Re - Nr0 e L (r) sinB(r) r dry (C-9)

0

The bending moment about the y-axis is

N ;q(2t--e d W(
Q = Ref Ee t -n y rPq tan5(r) sin (r) sin(2-t- P o - n
Y n=]

+ r cos (r) cos(,t-p o--n)] dS}

,.c:oh with the trigonometric transformations employed before becomes



R- 1869 C-5

N(q) s r tn b csy
Qy Re Z I L) (r,: )"., cos K e b

n 1 2:ori b cos (r)

n b n b

- e e + cos r) n e

iq- ( n) ib co r s
+ n e r si r. d; dr

Re i e ,t r tan$(r) sinE(r)j L (r,q c )e b s:C2 b

Re 7e ta ()•

r 0

(.N+) -ir cos
- L (r, ) e b cos sin d

-71 cos:. sib cd:;S r(;N-l) .:b os (;,N+l) -isb -°~z

+ coss(r)LL (r,:)e 1+ L r,)e
0

s inpc d r dr
*0C

The first u -integral is
01

(,N+1) 'ib C05

L (r,: e cos2 sin: d zpa
0 .r

7 N -I ,n) 'i-r cosc:.
= T L (r) ._I(n) e b ,s' sin 0  ds

0 n=l

(N-i ,n) A(n ) (- r) (C-1 O)
n=l
(n)

where ",n ( ) is as defined in Appendix A. The second y -integral

is given by (C-6). Finally,

Nr iX'NLt I L(,N-I,n)
Qy sin,(r) tan5(r) _Z (r) A. (-r)

y 2 0 b n=1 bo nl

(;,N+I ,n) -(kN- ,n) (n)(r) (n) (,r) + cos (r) (L ,n A ( b)

S L ,n) (n) n=I

L (r) ( ) r dr (C-1I)
,T)b
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The bending moment about the z-axis is

,- N iq ( 2t- n )  A (q )

Qz = Re n~l e iq(Qt- ) (q )[rco tan(r) sin (r) cos(.A-y - n)

r cos (r) sin( t-o-n) . dS

It can be shown that

.- Nr 2,m] r (.N-I ,n) (n
0_e __ r

Q = Re e "i sin (r) tans(r) Z (r) / (-)
z ~2i b I b

o n=l

(;N+l ,n) (n) (N-l ,n) (n)(r) A I  br) + bo r L r '

n=14-nL

- L (r) ', r) r dr- (C-12)

In the text, and in the program as well, the hydrodynamic pitch

angle -(r) of the assumed hel icoidal surface is replaced by the geometric

pitch angle P(r) of the actual propeller.

pi

L.!
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APPENDIX D

THE SINGULARITIES OF TIE INTEGRAY;DS OF THE

BLADE PRESSURE DISTRIBUTION

In Equation (49) for the pressure due to thickness (non-I ifting)

it is seen that there is a singularity when o = r, x , 0 = and

= 0 (i.e., n I). The singular part of the pressure can be expressed
n

as (see Eq. (53) with the substitutions 00 = a7 and Yo ax):

P U 2 , af(pC ) =
PT i 1f2 j J /+aP 0k(IK) eik(x-) dk

l ~ o p 0 -

+ j (IK) L)e i (ek'am)(x-')+ (k+am)e i (k+am ) (x - ) dk d6 dp
m= I o mc

(D-1)

For arbitrary thickness (see Eq. (32)).

Sf(p, ) 4" C (p) cos + 2 C (p) sin n,
0 2 n~n=l

where the coefficients are obtained as shown insect.A,3,c. Then the trigo-

nometric transformation

"b Cos-, )/a

yields

0

cosa eb

b

cos = 200
b

_a

sines de - d

Sb

I '
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2a (cP-a )di

sin 2- 2 d. 2sinj cos d- a

2 (b

(r'b)'b )

s in 3' d" [ -+4 3 ) "

b b

r_ a- 3 - a asin 4z- 4 C), - b' c -  J

nb b " b

and thus the slope can be expressed in the following form:

' (p,G)d <d(P) +/d (p) - d 2 (p) + d3 (p) + d4() +d 5 () 'd

=F( o d

.']+a

Equation (D-1) can be written as

U i k(x- )

P = F( :) " k(IK) e dk
I 2-

+ .(1) (~ae~aI(x-;) +,ka (k am) u dk -d~dp.kam (k-aam)()e+ IK) F( a )eidk- d

(0-2)

For finitc !" ttt , xansion of l/R in the above has no singularity.

The singular behavior is ;:Lrsent on!y in the infinite m-series (see Ref-

erence 10) When r z M Iarje, thu general ized mean value theorem can be

used.

d d

f(k) p(k) dk _ f(A) p(k) dk, c sC A d

c c

where f(k) I M (kl) K (lkr) for p < r

I (Iklr) K (Iklp) for r 3



R- 1869 0-3

and f(A) = I (lAIp) K (lAir), etc. with A < < m (order).
~(Ii)

By using Nicholson's approximation for the product of the modified

Bessel functions when A < < m

1 Zm
f (A) -2m where Z= p/r for p < r

r/p for r < j. (0-3)

Then for large m the integral can be written as

F(,p) Z _ Zm cos am(x-T) keik(x- )dkm
7 p 1=M -C

+ i a m sin am(x-T) ' e dk' dd (D-4)

From Jolley's collection of series summations
(12)

ia Z Zm sin ma(x- ) = iaZ sin a(x-.) (see Jolley 4+99)
m=l 1-2Z cos a(x- )+Z

CO CO

Z m Z
Also 1I m cos ma(x-) = Z Zm cos ma(x-E)

az m~l mZ m=l

cos a (x 7
- co (see Jolley 500)
1-2Z cos a(x-'-)+Z

The re fo re

E Z cos ma(x- ) - 2 cos azx- ) dz
m=l m-2Z cos a(x-d)+Z

= - 2 log [I - 2Z cos a(x-_)+Z2 ]
2

The m-series of (D-4) then is equivalent to

Il
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Sm IIlog [l-2zcosa(x- )+z] ke k(x- ) dk

+ ik(x- ) dk+2 e dk

1-2 Zcos a(x-g)+Z -O

_ m ik(x-t)
E z cos am(x- ) k e dkM l m C

00ik (x-§) dk"

+ i am sin am(x-g) ek ,d (D-5)

where the finite m-series can be ignored since it is certainly not singular.

The k-integrals are evaluated as

P ik(x- )d
j e = 2TT 6(x-§)
-00 (D-6)

0 k e ik(x-§) dk - {2 6'(x-§)
-00

where ,;(x- ) is the Dirac delta function and 6'(x-§) the derivatve of this

function with respect to (x-t).

With the substitution of (D-5) and (D-6) and letting xo  x -

Equation (D-4) becomes

I = i2n T T F(x-xop) f- log (l-2Z cos ax°+Z 6'(x

x pSaZ sinax
0 8(x )r dx d (D-7)

1-2Z cos axo+Z 0 0 p

and integrating over xo  results in

, -F(x-Xo0)P) ZZ

+iTT i)X o X =0 log (l-2Z+Z) dp (D-8)
p 0 0
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Wi th z =p/r or rip,

2 2~

log(l-2Z+Z ) log(l-Z) = 21og(l-Z)

= 2log (..rZ20 or 2 1og (O-r)

r p

hence the p-integral has a logarithmic singularity when p -r and this

has a finite contribution and is integrable.
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APPENDIX E

EVALUATION OF THlE o-INTEGRATiO0N I!V

THE REG ION OF THE SINGULARITY (SECTION 3)

Let K(p) represent the integrand of the p-integration. It has been

seen that when p - r, K(P) varies as iln(p-r). A logarithmic singularity

is integrable, but since the integration is performed numerically, special

precautions must be taken. In the region of the singularity p = r, the

integral is put in the form

r+5 ~p
I M(P)-dp (E-1)

p-r

where M(p) =(o-r)K(P) so that M = 0 when p = r, and 5 = Lr/2.

The function M(D) can be expanded about the singularity p=r

by the Lagrange formula

n n
M(P) E Ml(. M. 0,....n (E-2)

1=0 ( i) En 1+

where

(0) =(P-o 0 ) (- .. (-

-"Pi - ld p evaluated at p 3

and M i+1 =M(pi(seSc brog(1 and Watkins et a)l14

In the strip from r - to r + $ (with n =4 for the 5-point

formula), = r - = r -25, 1 r - 5, etc. where B /2. Then

-4i 4
n

and

41-1 (p-r+2 ) (P-r+5) (P-r) (,r- ) -r-2,) M

F, 4 = iI (4-1)I p - r + (2-i)6 i+1

(E-4)
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where M = 0 since o2 = r.

The integral is

4
r2, d r+25 2g

I= = dgp =-I, 
3 +g (pIr) 1 2+52 d+ +

' (p-r) A4 J - go l'k -r) (p-r) 23 -r

r-2, r-25

(E-5)

whe re

M I + M 5  M2 + M4  M3

o 41 31 *21

2(M 5- M i (M4 - M2 )

91 41 31

-(M I + M) 4(M2 + M4) 5M3

Y2 41 + 31 2121 (E-6)

2(M I - M ) 4(M 2 - M 4)

93 41 31

4

4 m (M =0)
94 2121 3 3

13 3then I 2(2A) + 53g 2(2,,)
4 3 3

16-3g l + 4 g
31 3

or I = - (M5- M) +6 (M4m (E-7)9 5 1 (14 M2)

where M - ( = r - )

M2 22 2

M + R (p= r + )
4 2 4 2

M +K ( r )
5 K5 r+
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Therefore

+ K- + .16 AL ( +K.

9 2 51 9 4 4 2

and

_ ( 1<) K (E-8)
6r 18 5 1 9 "4'2'
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